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Regression Analysis

The idea behind regression analysis is to verify that a function

¥ = f(x)

fits a given data set

{(X1,y1), (X2,¥2), -5 ( Xn,Yn)}

after obtaining the parameters that identify function f(x). The value x represents one or more
independent variables. The function f(x) can be, for example, a linear function, i.e.,

Y= mx+b, or ¥=Dbg+ bixg + ... + bxy),

a polynomial function, i.e.,
9: bo + blxl + ...+ prp,

or other non-linear functions. The procedure consists in postulating a form of the function to
be fitted, f/= f(x), which will depend, in general, of a number of parameters, say {by, by, ...,

bg. Then we choose a criteria to determine the values of those parameters. The most
commonly used is the least-square criteria, by which the sum of the squares of the errors (SSE)
involved in the data fitting is minimized. The error involved in fitting point i in the data set is
given by

€i =Yi- 9i ,

thus, the quantity to be minimized is

SE=Y e =3 (%)

Minimization of SSE is accomplished by taking the derivatives of SSE with respect to each of the
parameters, by, by, ..., by, and setting these results to zero, i.e., d(SSE)/dby = 0, A(SSE)/ b, = 0,
..., O(SSE)/ b, = 0. The resulting set of equations is then solved for the values by, by, ..., by.

After finding the parameters by minimization of the sum of square errors (SSE), we can test
hypotheses about those parameters under certain confidence levels to complete the regression

analysis. In the following section we present the regression analysis of a simple linear
regression.

Simple linear regression

Consider the data set represented in the figure below and represented by the set {(x1,Y1),
(X2,¥2),-..,( Xn,¥n)}- Suppose that the equation
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Y = mx+b,

representing a straight line in the x-y plane is used to represent the relationship between the
values x and y from the set. The fitted value of y corresponding to point x; is

¥, = mx;+b,

and the corresponding error in the fitting is

& = Yir ¥ = yi-(mxi+b) = yi-mx;-b.
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The sum of square errors (SSE) to be minimized is
k 2
SSE(m,b) = Z(yi -mx, —h)~.
1=

To determine the values of m and b that minimize the sum of square errors, we use the
conditions

) 9 _
(SE)=0  ~(SE)=0

from which we get the so-called normal equations:

iyi =th+m[ixi
N V. =b N ! \ 2
;xltyl Ele+m[ZxI

This is a system of linear equations with m and b as the unknowns. In matricial form, these
equations are written as
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For example, consider the data set given in the following table

C 0 . O
o % N o 02Y% 0
= O

X 12 | 25 | 43 | 83 |11.6
y [6.05]11.6|158]21.8]36.8

The following SCILAB commands will calculate the values of m and b to minimize SSE. A plot of
the original data and the straight line fitting is also produced. The column vector p stores the
values of m and b. Thus, for this case m=2.6827095 and b=3.4404811.

-->x=[1.2,2.5,4.3,8.3,11. 6] ; y=[ 6. 05, 11. 6, 15. 8, 21. 8, 36. 8] ;

- - >Sx=sum( X) ; Sx2=sum( x"2) ; Sy=sun(y); Sxy=sun( x. *y) ; n=l engt h(x) ;
-->A=[ Sx, n; Sx2, Sx] ; B=[ Sy; Sxy]; p=A\ B

p =

! 2.6827095
! 3. 4404811 !

-->deff (" [yl =yh(x)", " y=p(1).*x+p(2)")
-->plot2d(xf,yf,1,'011"," ', rect)
-->plot2d(x,y,-1,"011"," ',rect)

-->xtitle('Sinple linear regression','x',"'y")

The value of the sum of square errors for this fitting is:

-->yhat =yh(x) ; err=y-yhat ; SSE=sun{ err~2)
SSE = 23.443412

To illustrate graphically the behavior of SSE(m,b) we use the following function
SSEPlot(mrange,brange,x,y), where mrange and brange are vectors with ranges of values of m
and b, respectively, and x and y are the vectors with the original data.

function [] = SSEPI ot (nrange, br ange, x, y)

n=l engt h(mrange) ; m=l engt h(brange) ;
SSE = zeros(n, n);
deff (' [y]=f(x)"',"'y=slope*x+intercept')

for i = 1:n
for j = 1:m
sl ope = nrange(i);intercept=brange(j);
yhat = f(x);err=y-yhat; SSE(i,j)=sumerr”2);
end;
end;
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xset (' wi ndow , 1) ; pl ot 3d( nTr ange, br ange, SSE, 45, 45, ' mM@®@BSE' ) ;
xtitle(' Sum of square errors')

xset (' wi ndow , 2); cont our ( nr ange, br ange, SSE, 10) ;

xtitle(' Sum of square errors','m,'b");

The function produces a three-dimensional plot of SSE(m,b) as well as a contour plot of the
function. To produce the plots we use the following SCILAB commands:

-->nr = [2.6:0.01:2.8];br=[3.3:0.01: 3.5];
-->getf (' SSEPI ot ')

-->SSEPl ot (n7, br, x, y)

Burnoof squareereors

ZEE

644

1495

2344
33

The following two lines modify the contour plot.
-->plot2d([p(1)].,[p(2)],-9,"011"," ",[2.600 3.30 2.790 3.50])

-->xstring(p(1)+0.002, p(2)+0.002," mi ni mrum SSE' )

Burnoof squareereors
350 b
348 1
344 25
3 44 Gninimum.SSE
347 5.5
24 654 3524 05 L2375 375 1240524 2504 484,

3.40
338
336
334
333
2600 Z.61P 2638 2657 2676 2695 214 373 LFAD 27T LW
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Covariance and Correlation

The concepts of covariance and correlation were introduced in Chapter 14 in relation to
bivariate random variables. For a sample of data points (x,y), such as the one used for the
linear regression in the previous section, we define covariance as

Sy =3 (6 =Ry, )

n-1&

The sample correlation coefficient for x,y is defined as

s
r, = —2

Yos Ok,

where s,, s, are the standard deviations of x and y, respectively, i.e.

52 :ni—l (Xi _Y)z

2 1

— . — 7\?2
Sy n_llzzl(yi y)

The correlation coefficient is a measure of how well the fitting equation, i.e., "y = mx+b, fits
the given data. The values of r,,are constrained in the interval (-1,1). The closer the value of
ry is to +1 or -1, the better the linear fitting for the given data.

Additional equations and definitions

Let's define the following quantities:

S = (xi—i)zz(n—l)ﬂ;f:zxiz—EQing
= =S

1=1

S,=3 (-9 =(1-) ﬁy—%&y@
S,=3 009 =(0-018, = Sy~ 5 x By
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From which it follows that the standard deviations of x and y, and the covariance of x,y are

given, respectively, by

S o
S, =
n-1
s, = Sy
y —
n-1
S, = Sy
Xy
n-1
Also, the sample correlation coefficient is
— Sxy
rxy =
S, B,

In terms of X, Y, S, Syy, and Sy, the solution to the normal equations is:

S S

m= = >
S« Sk
b=y-mx

Standard error of the estimate

The function yi = mx;tb in a linear fitting is an approximation to the regression curve of a

random variable Y on a random variable X,

Y=Mx+B+eg,

where € is a random error. If we have a set of n data points (x;, y;), then we can write
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Yi=Mx; + B+ g,

i = 1,2,..,n, where Y; are independent, normally distributed random variables with mean
(a + pBx) and common variance ¢°, and & are independent, normally distributed random
variables with mean zero and the common variance &°.

Let y; = actual data value, 2y; = mx; + b = least-square prediction of the data. Then, the
prediction error is:
€ =Vi- Yi=Yi- (mx+b).

The prediction error being an estimate of the regression error &, an estimate of ¢ is the so-
called standard error of the estimate,

0 S, —(S,)°/S -
o2 1 Sy o +ye = SE =S (Sy)"/Sw _n-1

Se
n-24 n-2 n-2 n-2

(5, [@-r2)

A function for calculating linear regression of two variables

Using the definitions provided in this section, we can use the following user-defined function,
linreg, to calculate the different parameters of a simple linear regression.  The function
returns the slope, m, and intercept, b, of the linear function, the covariance, s,,, the
correlation coefficient, r,,, the mean and standard deviations of x and y ( x,Sy, Y,S,), and the
standard error of the estimate, s.. The function also produces a plot of the original data and of
the fitted equation. A listing of the function follows:

function [rxy, sxy, sl ope,intercept]=linreg(x,y)

n=l engt h(x) ; mel engt h(y);
if m>n then
error('linreg - Vectors x and y are not of the sane length.');

abort;
end;
SXX = sum(x*2)-sun(x) "2/ n;
Syy = sum(y”2)-sun(y) "2/ n;
Sxy = sum(X. *y)-sum(x) *sum(y)/n;
SX = sqgrt(Sxx/(n-1));
sy = sqrt(Syy/(n-1));
SXy = Sxy/(n-1);
rxy = Sxy/sqrt (Sxx*Syy);
xbar = nean(Xx);
ybar = nean(y);
sl ope = Sxy/ Sxx;
intercept = ybar - slope*xbar;
se = sqgrt((n-1)*syr2*(1-rxy”"2)/(n-2));
Xm n = mn(x);
Xmax = max(x);
Xrange = Xmax-xm n;
Xm n = xmn - xrange/ 10;
Xmax = xmax + xrange/ 10;
XX = [ xm n: (xmax-xm n)/ 100: xmax] ;

deff (' [y] =yhat (x)"',"'y=sl ope*x+intercept');
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yy = yhat (xx) ;

ymn = mn(y);

ymax = max(y);

yrange = ymax - ymn;

ym n = ymn - yrange/ 10;

ymax = ymax + yrange/ 10;

rect = [xmin ynmn xmax ymax];
pl ot 2d(xx, yy, 1,' 011" ," ' /rect);
xset (' mark',-9,1);

plot2d( x, y,-9,'011'," ' /rect);

xtitle('Linear regression','x','y');

As an example, we will use the following data set:

X 45 | 56 | 7.2 |11.2 | 15 20
y 113 | 114 | 109 | 96.5|91.9 | 825

First we enter the data into vectors x and y, and then call function linreg.

-->x=[4.5,5.6,7.2,11. 2,15, 20] ; y=[ 113, 114, 109, 96. 5, 91. 9, 82. 5] ;

-->[rxy, sxy, slope,intercept] = linreg(x,y)
xbar = 10.583333

ybar = 101. 15

sx = 6.0307269

sy = 12.823221

intercept = 123.38335
slope = - 2.1007891
sXy = - 76.405
rxy = - .9879955
Linearregression
11715 il
11337 ] o
102 50 ] Q
105.81 ]
102.03 ]
93.25__ 5
a4 .47 ]
a0 .69 ]
86.01 ]
83.15 ] o
= T
205 481 .67 853 1029 1225 1411 1597 1783 1960

21.55

The correlation coefficient r,, = -0.9879955 corresponds to a decreasing linear function. The
fact that the value of the correlation coefficient is close to -1 suggest a good linear fitting.

Confidence intervals and hypothesis testing in linear regression

The values m and b in the linear fitting )7i = mx;+b are approximations to the parameters M and

B in the regression curve
Y=Mx+B+e.
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Therefore, we can produce confidence intervals for the parameters M and B for a confidence
level a. We can also perform hypotheses testing on specific values of the parameters.
e Confidence limits for regression coefficients:
For the slope (M):
M = (tn2,a2) B/ VSxx < M < M + (L 12,a72) Se/ VS,
For the intercept (B):
b = (t n2,a2) Bll(1/N)+ X2/, ]? < B < b +(t n2,072) BlI(1/ 1)+ X/, ] 2,

where t follows the Student’s t distribution with v = n - 2, degrees of freedom, and n
represents the number of points in the sample.

» Confidence interval for the mean value of Y at x = X, i.e., mxq + b:

[MXo+b = (t n2.a/2) Be[L/N)+(Xo- X)°/ Sl 5 MXgHD +(t 12, 0 72) BIL/NY+(Xo~ X)*/S]™]

« Limits of prediction: confidence interval for the predicted value Y,=Y(Xp):

[MXo+b— (t 1-2,a72) BEL+(1/N)+(Xo- x)?*/ Sxx]l/2 s MXgHo+(t 12, g /2) BeJL+(1/N)+(Xo- X)*/Sx] 1/2]

*  Hypothesis testing on the slope, M:

The null hypothesis, Ho: M = My, is tested against the alternative hypothesis, Hi: M # M.
The test statistic is

to = (M-Mo)/(se/ V5x),

where t follows the Student’s t distribution with v = n - 2, degrees of freedom, and n
represents the number of points in the sample. The test is carried out as that of a mean
value hypothesis testing, i.e., given the level of significance, a, determine the critical
value of t, t,/,, then, reject Hy if tg > ty/, or if to< - ty,.

If you test for the value My= 0, and it turns out you do not reject the null hypothesis, Hy: M
= 0, then, the validity of a linear regression is in doubt. In other words, the sample data
does not support the assertion that M # 0. Therefore, this is a test of the significance of
the regression model.

* Hypothesis testing on the intercept , B:
The null hypothesis, Hqy: B = By, is tested against the alternative hypothesis, H;: B # By.
The test statistic is

to = (b-Bo)/[(1/n)+ X*/S ]2,

where t follows the Student’s t distribution with v = n - 2, degrees of freedom, and n
represents the number of points in the sample. The test is carried out as that of a mean
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value hypothesis testing, i.e., given the level of significance, a, determine the critical
value of t, t,/,, then, reject Hy if ty > t,/, or if ty< - t,.

A function for a comprehensive linear regression analysis

The following function, linregtable, produces a comprehensive analysis of linear regression
returning not only the basic information produced by function linreg, but also including a table
of data including the fitted values, the errors, and the confidence intervals for the mean value
and the predicted values of the regression line. The function also returns estimated errors of
the slope and intercept, and performs hypotheses testing for the cases M = 0 and B = 0.

function [se, rxy, sxy, sl ope,intercept, sy, sx, ybar, xbar] =linreg(x,y)
n=l engt h(x); mel engt h(y);

if m<>n then
error('linreg - Vectors x and y are not of the sane length.');

abort;
end;
SxXx = sum(x"2)-sunm(x) "2/ n;
Syy = sun(y”2)-sun(y) "2/ n;
Sxy = sum(X. *y)-sum(x) *sum(y)/n;
SX = sqrt(Sxx/(n-1));
sy = sqrt(Syy/(n-1));
SXy = Sxy/(n-1);
rxy = Sxy/sgrt (Sxx*Syy);
xbar = nean(Xx);
ybar = nean(y);
sl ope = Sxy/ Sxx;
intercept = ybar - slope*xbar;
se = sqrt((n-1)*sy”2*(1-rxy”"2)/(n-2));
Xm n = mn(x);
Xmax = max(x);
Xrange = Xmax-xm n;
Xxm n = xm n - xrange/ 10;
Xmax = xmax + xrange/ 10;
XX = [xm n: (xmax-xm n)/ 100: xmax] ;
deff (' [y]=yhat (x)',"'y=sl ope*x+intercept');
yy = yhat (xx);
ymn = mn(y);
ymax = max(y);
yrange = ymax - ymn;
ym n = ymn - yrange/ 10;
ymax = ymax + yrange/ 10;
rect = [xmin ynmn xmax ymax];
pl ot 2d(xx, yy, 1,' 011" ," ', rect);
xset (' mark',-9,1);
plot2d( x, y,-9,'011'," ' /rect);

xtitle('Linear regression','x','y');

An example for linear regression analysis using function linregtable

For an application of function linregtable consider the following (x,y) data. We use a
significance level of 0.05.
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x| 2.0 | 25 | 3.0 | 35 | 4.0
v| 55 | 7.2 | 9.4 | 10.0 | 12.2

The following SCILAB commands are used to load the data and perform the regression analysis:
-->getf(linregtable’)
-->x=[2.0,2.5,3.0,3.5,4.0];y=[5.5,7.2,9. 4,10.0, 12. 2] ;

-->linregtabl e(x,y,0.05)

Regression |ine: y 3.24*x + -.86
Signi ficance | evel .05
Val ue of t_al pha/2 3.18245

Confidence interval for slope
Confidence interval for intercept

[2.37976; 4. 10024]
[-3.51144; 1. 79144]

Covari ance of x and y = 2.025
Correl ation coefficient = .98972
Standard error of estimate = .42740
Standard error of slope = .27031
Standard error of intercept = .83315
Mean val ues of x and y =3 8.86
St andard deviations of x and y = .79057 2.58805
Error sum of squares = .548
X y Ny error C.I. nean C.l. predicted
2 5.5 5.62 -.12 4.56642 6. 67358 3. 89952 7.34048
2.5 7.2 7.24 -.04 6. 49501 7.98499 5.68918 8. 79082
3 9.4 8. 86 .54 8. 25172 9. 46828 7.37002 10. 35
3.5 10 10. 48 -.48 9. 73501 11. 225 8.92918 12. 0308
4 12.2 12.1 .1 11. 0464 13. 1536 10. 3795 13. 8205

Rej ect the null hypothesis HO: Sl ope = 0.
Test paraneter for hypothesis testing on the slope (t) = 11.9863

Do not reject the null hypothesis HO:lntercept = O.
Test paraneter for hypothesis testing on the intercept (t) = -.44117

The plot of the original data and the fitted data, also produced by function linregtable, is
shown next:

- Linearregression
1287

1207
11.26
10,44
065
285
205
7.4
fi.44
563
483
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The graph shows a good linear fitting of the data confirmed by a correlation coefficient
(0.98972) very close to 1.0. The hypotheses testing indicate that the null hypothesis Hy:b = 0
cannot be rejected, i.e., a zero intercept may be substituted for the intercept of -0.86 with a
95% confidence level. On the other hand, the null hypothesis Hy:m=0 is rejected, indicating a
proper linear relationship.

SCILAB function reglin

SCILAB provides function reglin, with call: [m,b,sig] = reglin(x,y), which returns the values of
the slope, m, the intercept, b, and the standard deviation of the residual, g, for the linear
fitting 9=mx+b. For the data of the example above, using reglin we obtain:

-->[mb,sig] = reglin(x,y)
sig = 0.3310589, b = -0.85, m= 3.24

Graphical display of multivariate data

In the next section we will present techniques of analysis for multiple linear regression in
which we use fittings of the form 9: by + b1 X + by, + bsfXz + ... + b,X,. Before we present
the details of the analysis, however, we want to introduce a simple way to visualize
relationships between pairs of variables in a multivariate data set. The proposed graph is an
array of plots representing the relationships between independent variables x; and x;, for i7j,
as well as the relationship of the dependent variable y and each of the independent variables
Xi. Function multiplot, which takes as input a matrix X whose columns are values of the
independent variables, and a (row) vector y, which represents the dependent variable,
produces such array of plots. A listing of the function multiplot follows next.

function [] = multiplot(Xy)

/1 Produces a matrix of plots:

/Il ---x1---- x1-vs-x2 x1-vs-x3 ... x1l-vs-y
/Il x2-vs-x1 ---X2--- X2-Vs-X3 ... X2-VSs-y
I . . . .

/1 y-vs-x1 y-Vs-Xx2 y-vs-x3 ... ---y---

[mn] = size(X);
nr = n+l; nc = nr;
XX =[Xy1;

xset (' wi ndow , 1) ;
xset (' default');
xbasc();

xset (' mark',-1,1);

for i = 1:nr
for j = 1:nc
nt1b_subplot(nr,nc, (i-1)*nr+j);
if i <>j then
rect= [min(XX(:,j)) mn(XX(:,i)) max(XX(:,j)) max(XX(:,i))];
plot2d( XX(:,j), XX(:,i),-1);
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if i==nr & j == nc then

xtitle(" ",'y','y');
el seif i==nr then
xtitle(' ',"'x +string(j),'y");
el seif j==nc then
xtitle(" ",'y","' X" +string(i));
el se
xtitle(" ","'x"+string(j), x" +string(i))
end;
end;
end;
end;

xset('font',2,5);

for i = 1:nr
for j = 1:nc
ntlb_subplot(nr,nc, (i-1)*nr+j);
if i==] then
plot2d([0],[0],1,'0210'," '",[O0 O 10 10]);
if i==nr & j==nc then
xstring(3,5,'y');
el se
xstring(3,5,"'x" +string(i));
end;
end;
end;
end;

To sub-divide the plot window into subplots, function multiplot uses function mtlb_subplot, a
function that emulates Matlab®’s function subplot (which explains the prefix mtlb_). Details of
this, and other functions with the mtlb_ prefix are presented in more detail in Chapter 20.

To illustrate the use of function multiplot we will use the following data set:

X1 X2 y

2.3 21.5 1471.47
3.2 23.2 165.42
45 245 170.60
5.1 26.2 184.84
6.2 27.1 198.05
7.5 28.3 209.96

The SCILAB commands to produce the plot array are shown next.

-->x1 =[2.33.24.55.16.2 7.5];

-->x2 = [21.5 23.2 24.5 26.2 27.1 28.3];
-->y = [147.47 165.42 170.60 184.84 198.05 209.96];
-->X=[ x1' x2'];

-->getf("multiplot')

-->mul tiplot(Xy)
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A result like this array of plots is useful in determining some preliminary trends among the
For example, the plots above show strong dependency between x; and x,, besides

variables.

the expected dependency of y on x; or y on X,.
independent of each other. When we refer to them as the independent variables, the meaning
is that of variables that explain y, which is, in turn, referred to as the dependent variable.
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Multiple linear regression

The subject of multiple linear regression was first introduced in Chapter 5 as an example of
applications of matrix operations. For multiple linear regression fitting consider a data set of
the form

X1 X2 X3 X4 X5 y
X11 X21 X31 Xn1 Y1
X12 X22 X32 Xn2 Y2
X13 X32 X33 Xn3 Y3
Xi,m1 X2m1 X3mi1 Xnam1  Yma
Xl,m X 2,m X 3,m X n,m ym

to which we fit an equation of the form
9: bo + blﬂl + bz&g + bgﬂg + ...+ bn&n.

If we write the independent variables x;, X,, ..., X, into a row vector, i.e., X; = [Xyi X3 ... Xni], and
the coefficients by by b, ... b, into a column vector b = [by b; b, bs .. b)]", we can write

yi = Xi[Eb.

If we put together the matrix, X = [X; X, ... X,]', i.e.,

1 X11 X21 X31 Xn1
1 X12 X22 X32 Xn2
1 X13 X32 X33 Xn3
1 X1,m X 2,m X3m X nm

and the vector, ¥ =[¥, ¥, .... V.17, we can summarize the original table into the expression
y = X [b.
The error vector is

e=y-Y,
and the sum of squared erros, SSE, is

SSE=e"[e=(y- )y - §) = (y-XB) Ly-X D).

To minimize SSE we write Jd(SSE)/b = 0. It can be shown that this results in the expression
X'X[b = X"y, from which it follows that

b=(XX) Xy
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An example for calculating the vector of coefficients b for a multiple linear regression was
presented in Chapter 5. The example is repeated here to facilitate understanding of the

procedure.

Example of multiple linear regression using matrices

use the following data to obtain the multiple linear fitting

y = bg + b5 + bpX; + by,

X1 X2 X3 y
1.20 3.10 2.00 5.70
2.50 3.10 2.50 8.20
3.50 4.50 2.50 5.00
4.00 4.50 3.00 8.20
6.00 5.00 3.50 9.50

With SCILAB you can proceed as follows:

First, enter the vectors x;, X, X3, and y, as row vectors:

->x1 = [1.2,2.5,3.5,4.0, 6. 0]
x1 =! 1.2 2.5 3.5 4 6. !
-->x2 = [3.1,3.1,4.5,4.5,5.0]
x2 =! 3.1 3.1 45 45 5 1

-->x3 = [2.0,2.5,2.5,3.0, 3. 5]
x3 =1 2. 2.5 2.5 3. 3.5 !

-->y =[5.7,8.2,5.0,8.2,9.5]
y = ! 57 82 5. 8.2 9.5

Next, we form matrix X:

-->X = [ones(5,1) x1' x2' x3']
X

PRPRPPRE
orwONE
GELENS

S I

S
wwnhN
(6)]

The vector of coefficients for the multiple linear equation is calculated as:

-->b =inv(X *X)*X *y
b =
- 2.1649851
- . 7144632
. 7850398
. 0941849

~N e
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Thus, the multiple-linear regression equation is:

yN =-2.1649851-0.7144632 X, -1.7850398 X, +7.0941849 X5.

This function can be used to evaluate y for values of x given as [X1,X,,X3]. For example, for
[X1.X2,X3] = [3,4,2], construct a vector xx = [1,3,4,2], and multiply xx times b, to obtain y(xx):

-->xx = [1,3,4,2]
xx =1 1. 3. 4. 2. !
-->XXx*b

ans = 2.739836

The fitted values of y corresponding to the values of x;, X,, and x3; from the table are obtained
from y = X[b:

-->X*b

ans =

! 5. 6324056 !
! 8. 2506958 !
! 5.0371769 !
! 8.2270378 !
! 9. 4526839 !

Compare these fitted values with the original data as shown in the table below:

X1 X2 X3 y y-fitted
1.20 3.10 2.00 5.70 5.63
2.50 3.10 2.50 8.20 8.25
3.50 4.50 2.50 5.00 5.04
4.00 4.50 3.00 8.20 8.23
6.00 5.00 3.50 9.50 9.45

This procedure will be coded into a user-defined SCILAB function in an upcoming section
incorporating some of the calculations for the regression analysis as shown next.

An array of plots showing the dependency of the different variables involved in the multiple
linear fitting is shown in the following page. It was produced by using function multiplot.

-->multiplot(X,y);

(See plot in next page).

Covariance in multiple linear regression

In simple linear regression we defined a standard error of the estimate, s., as an approximation
to the variance o of the distribution of errors. The standard error of the estimate, also known
as the mean square error, for multiple linear regression is defined as
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Se = MSE = SSE/(m-n-1),

where m is the number of data points available and n is the number of coefficients required for

the multiple linear fitting.

The matrix C = s.2(X"X)™" is a symmetric matrix known as the covariance matrix. The diagonal
elements c;; are the variances associated with each of the coefficients b;, i.e.,

Var(by) = cii,

while elements off the diagonal, cjj, i7j, are the covariances of b; and b, i.e.,

COV(bi,bj) = GCjj, I¢j

The square root of the variances Var(b;) are referred to as the standard error of the estimate

for each coefficient, i.e.,

_ 172
se(bi) = veii = [Var(b;)]™“.
6 xl 6zl 6 xl
5 5] 5
X]_ 4 + 4] + 4 +
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Confidence intervals and hypotheses testing in multiple linear
regression

The multiple linear relationship defined earlier, namely,
9: Do + b1y + 0200 + b3z + ... + b,
is an approximation to the multiple linear model
Y =Bot Bl + Bably + Bz + .. + Bnldy + €,

where Y is a normally-distributed random variable with mean 9 € is also normally-distributed
with mean zero. The standard deviation of the distributions of both Y and € is 6. An

approximation to the value of o is the standard error of the estimate for the regression, s,
defined earlier.
» Confidence intervals for the coefficients

Using a level of confidence a, we can write confidence intervals for each of the
coefficients S, in the linear model for Y, as

bi _(t m—n,a/Z)Ee(bi) < Bi < bi +(t m—n,a/Z)Be(bi) f

for i=1,2,...,n, where b; is the i-th coefficient in the linear fitting, ty., q/2 iS the value of the
Student’s t variable for v = m-n degrees of freedom corresponding to a cumulative
probability of 1-a/2, and se(b;) is the standard error of the estimate for b;.

« Confidence interval for the mean value of Y at X = X, i.e., Xo'b:

[Xo'D = (t menar2) X0 "ECKa]Y? 5 Xo'D +(t tmen,ar2) [o " [CXo]™? 7]
where C is the covariance matrix.
« Limits of prediction: confidence interval for the predicted value Yo=Y(X):

[Xo'b = (t mnar2) BeML+Xo TIH{C/Se) Ko]Y? 5 Xo'D +(t mn,ar2) BL[L+Xo TTAC/Se) ko] ? 2]

* Hypothesis testing on the coefficients, fi:

The null hypothesis, Hy: B = [, is tested against the alternative hypothesis, Hi: G Z So.
The test statistic is

to = (bi-Lo)/se(bi)

where t follows the Student’s t distribution with v = m-n, degrees of freedom. The test is
carried out as that of a mean value hypothesis testing, i.e., given the level of significance,
a, determine the critical value of t, t,/.,, then, reject Hy if ty > t,, or if to< - t,,. Of
interest, many times, is the test that a particular coefficient b; be zero, i.e., Hy: 5= O
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e Hypothesis testing for significance of regression

This test is aimed at determining if a linear regression indeed exists between y and x. The
null hypothesis to be tested is Ho: 3:=3=3; =..=5,=0, against the alternative hypothesis,
Hi:B # 0 for at least one value of i. The appropriate test to be conducted is an F test
based on the test parameter

___SR/n_ _ MR
° SE/(m-n-1) MSE’

where MSR = SSR/n is known as the regression mean square, MSE = SSE/(m-n-1) = s.2 is the
mean square error, SSE is the sum of squared errors (defined earlier), and SSR is the
regression sum of squares defined as

m
- o _o\2
SR = Z (Yi-y)",
1=
where y is the mean value of y. The parameter F, follows the F distribution with n
degrees of freedom in the numerator and m-n-1 degrees of freedom in the denominator.
For a given confidence level a, we will determine the value F,from the appropriate F
distribution, and reject the null hypothesis H, if Fy > F,.
» Analysis of variance for testing significance of regression
Analysis of variance is the name to the general method that produces the parameters

described above for the testing of significance of regression. The method is based on the
so-called analysis of variance identity,

SST = SSR + SSE,

where SSE and SSR were described above and SST, the total corrected sum of squares, is
described as

SST:E(yi—V)Z.

The term SSR accounts for the variability in y; due to the regression line, while the terms
SSE accounts for the residual variability not incorporated in SSR. The term SSR has n
degrees of freedom, i.e., the same number of coefficients in the multiple linear fitting.
The term SSE has m-n-1 degrees of freedom, while SST has n-1 degrees of freedom.
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Analysis of variance for the test of significance of regression is typically reported in a table
that includes the following information:

Variation source Sum of squares Degrees of freedom Mean square Fo
Regression SSR n MSR MSR/MSE
Residual/error SSE m-k-1 MSE

Total SST m-1

Coefficient of multiple determination

The coefficient of multiple determination R? is defined in terms of SST, SSR, and SSE, as

_SR_, SE

ST SST

R2

while the positive square root of this value is referred to as the multiple correlation
coefficient, R. This multiple correlation coefficient, for the case of a simple linear regression,
is the same as the correlation coefficient r,,. Values of R? are restricted to the range [0,1].

Unlike the simple correlation coefficient, r,,, the coefficient of multiple determination, R?, is
not a good indicator of linearity. A better indicator is the adjusted coefficient of multiple
determination,

2 _._ SSE/(m-n-1)
R =1 SST/(m-1)

A function for multiple linear regression analysis

The following function, multiplelinear, includes the calculation of the coefficients for a
multiple linear regression equation, their standard error of estimates, their confidence
interval, and the recommendation for rejection or not rejection for the null hypotheses Hy:5; =

0. The function also produces a table of the values of y, the fitted values Y, the errors, and

the confidence intervals for the mean linear regression Y, and for the predicted linear
regression. The analysis-of-variance table is also produced by the function. Finally, the
function prints the values of the standard error of the estimate, s., the coefficient of multiple
determination, the multiple correlation coefficient, the adjusted coefficient of multiple
determination, and the covariance matrix. The function returns the vector of coefficients, b,
the covariance matrix, cov(x;,X;), and the standard error of the estimate, s.. The arguments
of the function are a matrix XA whose columns include the column data vectors x;, Xs, ..., X,, a
column vector y containing the dependent variable data, and a level of confidence, alpha
(typical values are 0.01, 0.05, 0.10).
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A listing of the function follows:

function [b,C] = multiplelinear(XA vy, alpha)

[mn] = size(XA); /1Size of original X matrix
X = [ones(m 1) XA]; /1 Augnenting matrix X
b=i nv(X *X)*X *y; /| Coefficients of function
yh = X*b; /I/Fitted value of y
e=y-vyh; //Errors or residuals
SSE=e' *e; /1 Sum of squared errors
MSE = SSE/ (m n-1); /I Mean square error
se = sqrt(MSE); /1 Standard error of estimte
C = MBE*inv(X *X); /| Covari ance matrix
[nC nC] =size(O);
seb = []; // Standard errors for coefficients
for i = 1:nC

seb = [seb; sqrt(C(i,i))];
end;
ta2 = cdft (' T, mn, 1-al pha/ 2, al pha/2); //t_alphal/2
sY = []; sYp =[1]; //Ternms involved in C.1. for Y, Ypred
for i=1:m

sY = [sY;, sgrt(X(i,:)*CX(i,:)")];

sYp = [sYp; se*sqrt(1+X(i,:)*(dse)*X(i,:)")];
end;
ClYL = yh-sY; /lLower limt for C|. for nean Y
Cl YU = yh+sY; [/ Upper limt for CI. for nmean Y
Cl YpL = yh-sYp; //Lower limt for C|. for predicted Y
Cl YpU = yh+sYp; /[l Upper limt for Cl. for predicted Y
ClbL = b-ta2*seb; //Lower |imt for C|I. for coefficients
Cl bU = b+t a2*seb; /1 Upper limt for C . for coefficients
tOb = b./seb; /1t paraneter for testing HO:b(i)=0
decision = []; /I Hypothesis testing for HO:b(i)=0
for i = 1:n+l

if tOb(i)>ta2 | tOb(i)<-ta2 then

deci sion = [decision; ' reject "1;
el se
decision = [decision; ' do not reject'];

end;
end;
ybar = nean(y); /I Mean val ue of y
SST = sum((y-ybar)”2); /1 Total sum of squares
SSR = sum((yh-ybar)”2); // Resi dual sum of squares
MSR = SSK/ n; /| Regressi on mean square
MSE = SSE/ (mn-1); /1 Error mean square
FO = MSR/ MBE; /' F paranmeter for significance of regression
Fa = cdff('F ,n, mn-1,1-al pha, al pha); /1 F_al pha
R2 = 1-SSE/SST; R = sqrt(R2); /1 Coeff. of multiple regression
Ra = 1-(SSE/ (mn-1))/(SST/(m1)); //Adj. Coeff. of nultiple regression

//Printing of results

printf(" ");

printf("Miltiple Iinear regression');
printf(’ ");
printf(" ');

printf(' Table of coefficients');
[T 1 (e

--');
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printf(’ i b(i) se(b(i)) Lower Upper
HO: b(i)=0");

Printf( --ommmm e

=)
for i = 1l:n+l
printf('%.0f %40g %40g %40g %40g %40g ' +decision(i), ...
i-1,b(i),seb(i),CbL(i),CbU(i),t0b(i));
end;

Printf (' ---mmmm -

)
printf(’ t _alpha/2 = %' ,ta2);

[T O (e e

prinif(' Nyprintf (),

printf(' Table of fitted values and errors');

[T O (e I e

printf(" i y(i) yh(i) e(i) Cl. for Y
for Ypred);

[T 1 G I e

for i = 1:m
printf('%. 0f 940.6g 9%10.6g %0.6g %0. 69 %0. 69 %0.6g9g %0.6q', ...
i, y(i),yh(i),e(i), AYL(i), CYUi),dYpL(i), CYpU(i));

printf(" ");printf(" ');
printf (' Analysis of variance');

Printf(  mmmmm i m e ");
printf (' Source of Sum of Degr ees of Mean')
printf('variation squares freedom square FO');
Printf (" --mmmmmm o ");
printf (' Regression %40. 6g 940. 0f 940.6g 9%40. 69", SSR, n, MSR, FO' ) ;
printf (' Residual %40. 6g %9d40. 0f 940. 6g ', SSE, m n- 1, MSE) ;
printf (' Total %4.0. 6g 94.0. Of ', SST, m1);

Printf(  mmmmmmmm e ");

printf("Wth FO = %9 and F_al pha = %g, ', FO, Fa);
if FO>Fa then

printf('reject the null hypothesis HO: betal=beta2=...=betan=0.");
el se

printf('do not reject the null hypothesis HO: betal=beta2=...=betan=0.");

end;
Printf('----cmmmmm i - ")

disp(" ");

printf (' Additional information');
Printf (- mmmm i m e ")
printf (' Standard error of estimate (se)

printf(' Coefficient of nultiple determ nation (R*2)
printf('Miltiple correlation coefficient (R
printf (' Adjusted coefficient of multiple determ nation

[T O G I i ")

printf(" ");

printf (' Covariance matrix:"');

disp(Q);

printf(" ');

Printf( --mmmm e e ")
//Plots of residuals - several options
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for j = 1:n
xset ('wi ndow ,j);xset('mark', -9, 2);
pl ot 2d( XA(:,j),e, -9)
xtitle(' Residual plot -

end;

xset (' wi ndow , n+l); xset (' mark', -9, 2);

pl ot 2d(y, e, -9);

xtitle(' Residual plot - error vs

xset (' wi ndow , n+2); xset (' mark', -9, 2);

pl ot 2d(yh, e, -9);

xtitle(' Residual

error vs.

plot - error vs. yh','

xbasc(j);

y','y' ,"error');

yh',"error');

Application of function multiplelinear

X" +string(j),"x +string(j), error');

Consider the multiple linear regression of the form y = bgtb;x;+byx, for the data shown in the

following table:

X1 Xz X3 y

1.20 3.10 2.00 5.70
2.50 3.10 2.50 8.20
3.50 4.50 2.50 5.00
4.00 4.50 3.00 8.20
6.00 5.00 3.50 9.50

First, we load the data:

-->x1=[1.2,2.5,3.5,4.0,6.0];x2=[3.1,3.1,4.5,4.5,5.0] ;

-->x3=[2.0,2.5,2.5,3.0,3.5];y =[5.7,8.2,5.0,8.2,9.5];

-->X=[ x1' x2' x3']

X =

! 1.2 3.1 2. !

! 2.5 3.1 2.5 !

! 3.5 4.5 2.5 1

! 4, 4.5 3. !

! 6. 5. 3.5 !

__>y:y'

y =

I 5.7

! 8.2 !

1 5 1

! 8.2 !

I 9.5

Then, we call function multiplelinear to obtain information on the multiple linear regression:

-->[b,C se]l=mul tiplelinear(Xy,0.1);

Mul tiple linear regression

Tabl e of coefficients

i b(i) se(b(i)) Lower
0 -2.16499 1.14458 -5.50713
1 -. 71446 . 21459  -1.34105
2 -1.78504 . 18141  -2.31477
3 7.09418 . 49595 5. 64603

HO: b(i) =0

do not reject
rej ect

rej ect

rej ect
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1.17716  -1.89152

-. 0878760 -3.3295

-1.25531 -9.83958

8.54234 14. 3043

t _alpha/2 = 2.91999
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Table of fitted values and errors

. 5
8. 13913 8
4.92504 5. 14931
8. 11459 8
9. 34096 9

i y(i) yh(i) e(i) Cl. for Y
1 5.7 5.63241 . 0675944 5.54921 5. 7156
2 8.2 8.2507 -.0506958 8. 15624 8. 34515
3 5 5.03718 -.0371769 4.93663 5.13772
4 8.2 8.22704 -.0270378 8.12331 8. 33077
5 9.5 9. 45268 . 0473161 9. 3565 9. 54887
Anal ysi s of variance
Sour ce of Sum of Degr ees of Mean
variation squares freedom square FO
Regr essi on 14. 2965 3 4. 7655 414.714
Resi dual . 0114911 1 . 0114911
Tot al 14. 308 4
Wth FO = 414.714 and F_al pha = 53. 5932,
reject the null hypothesis HO: betal=beta2=...=betan=0.
Addi tional information
Standard error of estimate (se) = 10720
Coefficient of multiple determ nation (R*2) = 99920
Mul tiple correlation coefficient (R) = 99960
Adj usted coefficient of nmultiple determ nation = 99679
Covari ance matri x:
! 1.3100522 .2388806 - .1694459 - .5351636 !
! . 2388806 . 0460470 - .0313405 - .1002469 !
! . 1694459 . 0313405 . 0329111 . 0534431 !
! . 5351636 . 1002469 . 0534431 . 2459639 !

The results show that, for a confidence level a = 0.1, the hypothesis Hy: 3 = 0 may not be
rejected, meaning that you could eliminate that term from the multiple linear fitting. On the
other hand, the test for significance of regression indicates that we cannot reject the
hypothesis that a linear regression does exist. Plots of the residuals against variables X, X,, X,
y, and "y are shown next.
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A function for predicting values from a multiple regression

The following function, mlpredict, takes as arguments a row vector x containing values of the
independent variables [X; X, .. X,] in a multiple linear regression, b is a column vector
containing the coefficients of the linear regression, C is the corresponding covariance matrix,
se is the standard error of the estimate, and alpha is the level of confidence. The function
returns the predicted value y and prints the confidence intervals for the mean value Y and for
the predicted value of V.

function [y] = nmlpredict(x,b,C, se, al pha)
nb = length(b); nx = length(x);

i f nb<>nx+1 then
error('mpredict - Vectors x and b are of incompatible length."');

abort;
el se
n = nx;

end;
[nC nC] = size(O);

if nC<>nC then
error('mpredict - Covariance matrix C nust be a square matrix.");
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abort;
el seif nC<>n+1 then

error('mpredict - Dinensions of covariance matrix inconpatible with vector
b.");
abort;
end;
xx = [1 x]; /l augment vector x
y = Xx*b; //calculate y
CIYL =y - sgrt(xx*Cxx"); //Lower limt C 1. for mean Y
CIYU =y + sgrt(xx*C*xx"); //Upper Iimt C1l. for mean Y
ClYpL =y - se*sqrt(1l+xx*(C/ se)*xx"); //Lower limt C 1. for predicted Y
ClYpU = y + se*sqgrt(1+xx*(C/ se)*xx"); //Upper Iimt C 1. for predicted Y

//Print results

printf(" ");

disp(" ',x,"For x =");

printf("Miltiple |linear regression predictionisy
printf (' Confidence interval for mean value Y
printf(' Confidence interval for predicted value Y

%' ,y);
[%g, 9], Cl YL, ClYU);
[%g, %9] "', Cl YpL, Cl YpU)

An application of function mlpredict, using the values of b, C, and se obtained from function
multiplelinear as shown above, is presented next:

-->y=n predi ct (x, b, C,se, 0.1);
For x =
! 2. 3.5 2.8
10. 0222

[9.732,10. 3123]
[9.87893, 10. 1654]

Multiple linear regression predictionis y
Confidence interval for mean value Y
Confidence interval for predicted value Y

Simple linear regression using function multiplelinear

Function multiplelinear can be used to produce the regression analysis for a simple linear
regression as illustrated in the following example. The data to be fitted is given in the
following table:

X y
1.02 90.02
1.05 89.14
1.25 91.48
1.34 93.81
1.49 96.77
1.44 94.49
0.94 87.62
1.30 91.78
1.59 99.43
1.40 94.69
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A plot of the data is produced with:

-->plot2d(x,y,-1);xtitle(’Sinple linear regression exanple', "x','y');

SBirnplelinear regression exarnple
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The regression analysis using function multiplelinear follows:
-->[b,C se] = multiplelinear(XY,O0.05);
Mul tiple linear regression
Tabl e of coefficients
i b(i) se(b(i)) Lower Upper t0 HO:b(i)=0
0 72.2564 2.03849 67. 645 76. 8678 35.446 reject
1 16. 1206 1.5701 12. 5688 19. 6724 10. 2672 reject
t _alpha/2 = 2.26216
Table of fitted values and errors
i y(i) yh(i) e(i) Cl. for Y C.1. for Ypred
1 90. 02 88. 6994 1. 32059 88.1769 89. 2219 87.552 89. 8468
2 89. 14 89.183 -.0430274 88. 6967 89. 6694 88. 052 90. 3141
3 91. 48 92. 4071 -.92714 92. 081 92. 7333 91. 3363 93. 4779
4 93.81 93.858 -.0479932 93. 5232 94.1928 92. 7845 94. 9315
5 96. 77 96. 2761 . 49392 95. 8173 96. 7349 95. 1568 97. 3953
6 94. 49 95. 4701 -. 98005 95. 0634 95. 8767 94. 3715 96. 5686
7 87.62 87.4098 . 21024 86. 7835 88. 036 86.2107 88. 6089
8 91.78 93. 2132 -1.43317 92. 8897 93. 5366 92. 1432 94. 2831
9 99. 43 97. 8881 1.54186 97. 307 98. 4692 96.7124 99. 0639
10 94. 69 94. 8252 -. 13523 94. 4535 95. 1969 93. 7394 95. 9111
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Anal ysi s of variance

Sour ce of Sum of Degr ees of Mean

variation squares freedom square FO
Regr essi on 109. 448 1 109. 448 105. 416
Resi dual 8. 30597 8 1.03825

Tot al 117. 754 9

Wth FO = 105.416 and F_al pha = 5. 31766,
reject the null hypothesis HO: betal=beta2=...=betan=0.

Addi tional information

Standard error of estimate (se) = 1.01894
Coefficient of multiple determ nation (R*2) = .92946
Mul tiple correlation coefficient (R) = .96409
Adj usted coefficient of multiple determnation = 92065

Covari ance nmatri x:

! 4.1554489 - 3.1603934 !
I - 3.1603934 2.4652054 !

Compare the results with those obtained using function linreg:
-->[se, rxy, sxy, mb, sy, sx, ybar, xbar]=linreg(x,y);

-->[mb]
ans =1!  16.120572 72.256427 !

-->se
se = 1.0189435

-->rxy
rxy = .9640868

The data fitting produced with linreg is shown in the next figure:

- Linearregression
100.61

9559 |
96 56 |
94 54 ]
92.51_]
90.49_]

8846 _

8644 ] T T T T T T T T T T T T T
0.875 0926 1.092 1.209 1321 1.432 1.544 1.655
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Analysis of residuals

Residuals are simply the errors between the original data values y and the fitted values 9 ,
i.e., the values

e=y-VY.

Plots of the residuals against each of the independent variables, X1, X, ..., X,, Or against the
original data values y or the fitted values f/ can be used to identify trends in the residuals. If

the residuals are randomly distributed about zero, the plots will show no specific pattern for
the residuals. Thus, residual analysis can be used to check the assumption of normal
distribution of errors about a zero mean. If the assumption of normal distribution of residuals
about zero does not hold, the plots of residuals may show specific trends.

For example, consider the data from the following table:

X1 X2 p q r
1.1 22.1 1524. 7407 3585. 7418 1558. 505
2.1 23.2 1600. 8101 3863. 4938 1588. 175
3.4 24.5 1630. 6414 4205. 4344 1630. 79
4.2 20. 4 1416. 1757 3216. 1131 1371.75
5.5 25.2 1681. 7725 4409. 4029 1658. 565
6.1 23.1 1554. 5774 3876. 8094 1541. 455
7.4 19.2 1317. 4763 2975. 0054 1315. 83
8.1 18.2 1324. 6139 2764. 6509 1296. 275
9.9 20.5 1446. 5163 3289. 158 1481. 265
11. 19.1 1328. 9309 2983. 4153 1458. 17

The table shows two independent variables, x; and x,, and three dependent variables, i.e., p =
pP(X1,X2), q = q(X1,X2), and r = r(xy,X2). We will try to fit a multiple linear function to the three
functions, e.g., p = bg + byx; + byX,, using function multiplelinear, with the specific purpose of
checking the distribution of the errors. Thus, we will not include in this section the output for
the function calls. Only the plots of residuals (or errors) against the fitted data will be
presented. The SCILAB command required to produce the plots are shown next.

-->x1=[1.1 2.1 3.4 4.25.56.17.48.19.9 11.0];
-->x2 = [22.1 23.2 24.5 20.4 25.2 23.1 19.2 18.2 20.5 19.1];
-->p = [ 1524. 7407 1600. 8101 1630. 6414 1416. 1757 1681. 7725 ...

--> 1554. 5774 1317. 4763 1324. 6139 1446. 5163 1328. 9309 ];

-->q = [ 3585.7418 3863. 4938 4205. 4344 3216. 1131 4409. 4029 ...

--> 3876. 8094 2975. 0054 2764. 6509 3289. 158 2983.4153 ];

-->r = [ 1558. 505 1588. 175 1630. 79 1371. 75 1658. 565 1541. 455 . ..
--> 1315. 83 1296. 275 1481. 265 1458.17 1;

-->X = [x1'" x2']

-->[b,C se] = multiplelinear(X p',0.01);
-->[b,C se] = multiplelinear(Xq,0.01);
-->[b,C se] = multiplelinear(Xr',0.01);
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The following table summarizes information regarding the fittings:

Fitting R? R R%adi Significance
p=p(x1,X,) 0.97658 0.98822 0.96989 reject Hy
g=9(Xy,X2) 0.99926 0.99963 0.99905 reject Hy
r=r(Xy,X2) 0.8732 0.93445 0.83697 reject Hy

The three fitting show good values of the coefficients R?, R, and Rzad,-, and the F test for the
significance of the regression indicates rejecting the null hypothesis Ho: 3, = 8,=.. = 3,=01in
all cases. In other words, a multiple linear fitting is acceptable for all cases. The residual
plots, depicted below, however, indicate that only the fitting of p=p(x1,X») shows a random
distribution about zero. The fitting of q=q(x1,x,) shows a clear non-linear trend, while the
fitting of r=r(x(,x,) shows a funnel shape.
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Scaling residuals

The errors e; may be standardized by using the values
ze; = €i/Se,

where s, is the standard error of the estimate from the multiple linear fitting. If the errors
are normally distributed then approximately 95% of them will fall within the interval (-2,+2).
Any residual located far outside of this interval may indicate an outlier point. Outlier points
are points that do not follow the general trend of the data. They may indicate an error in the
data collection or simply an extremely large or low value in the data. If sufficient justification
exists, outlier points may be discarded and the regression repeated with the remaining data
points.

Another way to scale residuals is to use the so-called studentized residuals defined as
Fr=_ 9
I )
S.4/1-h,
i=1,2,..,m, where h; are the diagonal elements in the ‘hat’ matrix, H, defined as

H = XIX'X) ' X.

This matrix relates the observed values y to the fitted values V, i.e., ¥ = H¥. Thus, the

name ‘hat” matrix. Using the values h;; we can write the studentized standard error of the i-th
residual as

se(€i) = Se[a‘-'hii)llz-

Download at InfoClearinghouse.com 34 © 2001 Gilberto E. Urroz



Influential observations

Sometimes in a simple or multiple linear fitting there will be one or more points whose effects
on the regression are unusually influential. Typically, these so-called influential observations
correspond to outlier points that tend to “drag” the fitting in one or other direction. To
determine whether or not a point is influential we computed the Cook’s distance defined as

e’h, ze’h, r’h

(+Ds:@+h)”  (n+DA+h)°  (n+DA-h)’

i=1,2,..,m. Avalue of d; > 1 may indicate an influential point.

A function for residual analysis

The following function, residuals, produces a comprehensive residual analysis including the
standardized and studentized residuals, studentized standard error of estimates for the
residuals, and the corresponding Cooks’ distances. The function takes as input a matrix X
whose columns represent the independent variables, i.e., X = [X; X, X,], and the column
vector y containing the dependent variable. The function produces a table of results, plots of
the residuals and Cook distances, and returns the values sc(g;) , ze;, r;, and d;. A listing of the
function follows:

function [e,stderr,ze,r,d] = residual s(XAYy)
//Multiple linear regression - residual analysis
/le = residual s

//stderr = standard errors of residuals

/lze = standardi zed residual s

Ilr = studentized residual s

/1d = Cook's distances

[mn] = size(XA); /1Size of original X matrix
X = [ones(m 1) XA]; [/ Augnmenting matrix X
H= X*inv(X *X)*X ; [/H ("hat') matrix

yh = Hy; //Fitted value of y
e=y-vyh; [l Errors or residuals
SSE=e' *e /1 Sum of squared errors

se = sqrt(MSE);
[nh mh] = size(H);
h=[];

for i=1:nh

h=[h; H(i,i)];

end;

see = se*(1-h)."2;

/I Mean square error

/] Standard error of estinmate
/1Size of matrix H

/'l Vector h

//standard errors for residuals

ze = el se; /] st andar di zed residual s
r = e./see; //studenti zed residual s
d =r.*r.*h./(1-h)/(n+l); /1 Cook' s di stances

//Printing of results

printf(" ");
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printf (' Residual Analysis for Miltiple Linear Regression');

[T 1 (e e i
b;;h;;i:-- i’ y(i) yh(i) e(i) se(e(i)) ze(i) r(i)
d(i)");

[T 1 (e e
---------- )

for i = 1im

printf(' %.0f %0.6g %0.6g %0.6g %0.6g %0.6g %.0.6g %0.6q ,...
i,y(i),yh(i),e(i),see(i),ze(i),r(i),d(i));

end;

Printf(f -mmmmm s
---------- )

printf('Standard error of estimate (se) = %', se);

T 1 (e e
---------- )

printf(" ");

//Plots of residuals - several options
xset (' wi ndow , 1) ; xset (' mark', -9, 2);

pl ot 2d(yh, e, -9);
xtitle(' Residual plot - residual vs. y','y',"'¢e");

xset (' wi ndow , 2); xset (' mark', -9, 2);
pl ot 2d(yh, ze, -9);
xtitle(' Residual plot - standardized residual vs. yh','yh',K6'ze');

xset (' wi ndow , 3); xset (' mark', -9, 2);
pl ot 2d(yh,r,-9);
xtitle(' Residual plot - studentized residual vs. yh',"yh', 'r');

xset (' wi ndow , 4); xset (' mark', -9, 2);

pl ot 2d(yh, d, -9);
xtitle(' Cook distance plot','yh',"'d");

Applications of function residuals

Applications of function residuals to the multiple linear fittings p = p(x1,X2), 4 = q(X1,X2), and r
= r(Xy,X2), follow. First, we load function residuals:

-->getf(‘residuals’)

Residual analysis for p = p(x;,X;)

-->residual s(X p');
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Resi dual Analysis for Miltiple Linear Regression

i y(i) yh(i) e(i) se(e(i)) ze(i) r(i) d(i)
1 1524.74 1521. 69 3. 04682 8. 02336 . 13006 . 37974 . 0340687
2 1600. 81 1578. 51 22. 3035 13. 2116 . 95204 1.68817 . 31503
3 1630. 64 1645.41 -14.7688 12.6407 -.63042 -1.16835 . 16442
4 1416. 18 1424. 51 - 8.33603 13.589 -. 35583 -.61344 . 0392612
5 1681. 77 1678. 61 3.16424 6. 70004 . 13507 L 47227 . 0646745
6 1554. 58 1565. 08 -10. 5036 15. 6687 -. 44835 -.67035 . 0333676
7 1317. 48 1353.87 -36.3932 14,7089 -1.55347 -2.47422 . 53468
8 1324.61 1298. 97 25. 6415 10. 9047 1.09453 2.35141 . 85834
9 1446. 52 1418. 35 28. 1663 11. 9558 1.2023 2. 35587 . 73966
10 1328. 93 1341.25 -12.3207 9.18077 -.52592 -1.34202 . 35865
Standard error of estimate (se) = 23. 427

Notice that most of the standardized residuals are within the interval (-2,2), and all of the
values d; are less than one. This residual analysis, thus, does not reveal any outliers. Similar
results are obtained from the following table corresponding to the fitting q = q(X1,X2).

Residual analysis for g = g(x;,Xz)

-->residual s(X q');

Resi dual Analysis for Miltiple Linear Regression

i y(i) yh(i) e(i) se(e(i)) ze(i) r(i) d(i)
1 3585. 74 3594. 19 -8.45215 5. 89407 -.49112 -1.43401 . 48583
2 3863. 49 3869. 77 -6.27968 9. 70543 -. 36489 -. 64703 . 0462771
3 4205. 43 4196. 81 8.62144 9. 28605 . 50096 . 92843 . 10383
4 3216. 11 3221. 54 -5. 43054 9. 98268 -. 31555 -. 54400 . 0308755
5 4409. 4 4388. 96 20. 4452 4.92194 1.188 4.15388 5. 00333
6 3876. 81 3891. 61 -14. 8006 11. 5105 -. 86001 -1.28584 . 12277
7 2975. 01 2970. 09 4.91247 10. 8054 . 28545 . 45463 . 0180525
8 2764. 65 2738.01 26. 6417 8. 01076 1. 54806 3. 32574 1.71704
9 3289. 16 3310. 89 -21.7285 8.78291 -1.26257 -2.47396 . 81567

10 298342 2987.34 -3.92933 6.74432 -.22832 -.58261 .0675956
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Residual analysis for r = r(x;,X,)

-->residuals(Xr');

Resi dual Analysis for Miltiple Linear Regression

i y(i) yh(i) e(i)  se(e(i)) ze(i) r(i) d(i)
1 1558. 51 1493. 88 64. 627 17. 7424 1. 2475 3. 64252 3.13458
2 1588. 18 1558. 26 29.9105 29. 2154 . 57737 1. 02379 . 11586
3 1630. 79 1634.99 -4.20322 27.953 -.0811352 -.15037 .00272348
4 1371.75 1419.35 -47.6025 30. 05 -.91888 -1.58411 . 26181
5 1658. 57 1683.84  -25.2722 14. 8161 -.48783 -1.70573 . 84366
6 1541. 46 1574.41  -32.9551 34. 6489 -.63614 -. 95112 . 0671713
7 1315. 83 1372.19 -56.3571 32.5265 -1.08787 -1.73265 . 26221
8 1296. 27 1322.31  -26.0318 24,1141 -.50249 -1.07953 . 18091
9 1481. 27 1455, 37 25. 8962 26. 4384 . 49988 . 97949 . 12786
10 1458. 17 1386. 18 71.9883 20. 3018 1.3896 3. 5459 2. 50387
Standard error of estimate (se) = 51. 8051

The table corresponding to the fitting g=q(x;,x,) shows two residuals, e; and e;q whose Cook’s
distance is larger than one. These two points, even if their standardized residuals are in the
interval (-2,2), may be considered outliers. The residual analysis eliminating these two
suspected outliers is shown next.

Residual analysis for r = r(x;,x,) eliminating suspected outliers

To eliminate the outliers we modify matrix X and vector r as follows:

-->XX = X(2:9,:)
XX =

N A~WN

ORRARPUONIPR
N
o
ONNRPNNAN

-->rr = r(2:9)
rr =

! 1588. 175 1630. 79 1371.75 1658. 565 1541. 455 1315. 83
1296. 275 1481. 265

-->residual s(XX, rr');
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Resi dual Analysis for Miltiple Linear Regression

i y(i) yh(i) e(i) se(e(i)) ze(i) r(i) d(i)
1 1588. 18 1542. 72 45. 459 10. 9925 1.27186 4.13546 4.57875
2 1630. 79 1627. 12 3.67448 17. 1966 . 10280 . 21367 .00672191
3 1371. 75 1393.76 -22.008 14. 0957 -.61574 -1.56133 . 48136
4 1658. 57 1681. 94 -23.3752 9.70312 -. 65399 -2.40904 1.77832
5 1541. 46 1563.69 -22.2351 22.8787 -. 62210 -.97187 . 0786800
6 1315. 83 1345. 33 -29. 4969 18. 9967 -. 82527 -1.55274 . 29870
7 1296. 27 1291. 79 4.48228 12. 618 . 12541 . 35523 . 0287305
8 1481. 27 1437. 77 43. 4995 8.21833 1.21703 5.29299 10. 1365
Standard error of estimate (se) = 35.7423

Even after eliminating the two influential observations we find that the remaining e; and eg are
influential in the reduced data set. We can check the analysis of residuals eliminating these
two influential observations as shown next:

--SXXX = XX(2:7), rrr =rr(2:7)
XXX =

© Nk~ W
PAPRPNA

rrr =
! 1630. 79 1371.75 1658. 565 1541. 455 1315. 83 1296. 275 !
-->residual s(XXX, rrr');

Resi dual Analysis for Multiple Linear Regression

I y(i) yh(i) e(i) se(e(i)) ze(i) r(i) d(i)
1 1630.79 1601.8 28.9923 33.2701 .20573 .87142 .40176

2 1371.75 1557. 26 -185. 509 65. 1625 -1.31635 -2.84688 1.9071
3 1658. 57 1484. 88 173. 68 96. 7163 1.23241 1.79577 . 33395
4 1541. 46 1451. 48 89. 9739 96. 4308 . 63844 . 93304 . 0909297
5 1315. 83 1379. 11 -63. 2765 63. 918 -. 44900 -. 98996 . 23759
6 1296. 27 1340.14  -43.8605 35. 9466 -.31123 -1.22016 . 72952
Standard error of estimate (se) = 140. 927

Even after eliminating the two points e; and eg from the reduced data set, another influential
point is identified, e,. We may continue eliminating influential points, at the risk of running
out of data, or try a different data fitting.
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Multiple linear regression with function datafit

SCILAB provides function datafit, introduced in Chapter 8, which can be used to determine the
coefficients of a fitting function through a least-square criteria. Function datafit is used for
fitting data to a model by defining an error function e = G(b,x) where b is a column vector of m
rows representing the parameters of the model, and x is a column vector of n rows
representing the variables involved in the model. Function datafit finds a solution to the set
of k equations e; = G(b,x;) = 0.

The simplest call to function datafit is

[p,err]=datafit(G,X,b0)
where G is the name of the error function G(b,x), X is a matrix whose rows consists of the
different vectors of variables, i.e., X = [X3; Xo; ...;Xs], and b0 is a column vector representing

initial guesses of the parameters b sought.

Function datafit can be used to determine the coefficients of a multiple linear fitting as
illustrated in the example below. The data to be fit is given in the following table:

X1 X2 X3 X4 y

25 24 91 100 240
31 21 90 95 236
45 24 88 110 290
60 25 87 88 274
65 25 91 94 301
72 26 94 99 316
80 25 87 97 300
84 25 86 96 296
75 24 88 110 267
60 25 91 105 276
50 25 90 100 288
38 23 89 98 261

First, we load the data and prepare the matrix XX for the application of function datafit.

-->XY=. ..

-->[25 24 91 100 240
-->31 21 90 95 236
-->45 24 88 110 290
-->60 25 87 88 274
-->65 25 91 94 301
-->72 26 94 99 316
-->80 25 87 97 300
-->84 25 86 96 296
-->75 24 88 110 267
-->60 25 91 105 276
-->50 25 90 100 288
-->38 23 89 98 261] ;
- - >XX=XY" ;
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Next, we define the error function to be minimized and call function datafit:

-->deff (' [e]=G(b,z)", ...
--> "e=b(1)+b(2)*z(1)+b(3)*z(2)+b(4)*z(3)+b(5)*z(4)-2(5)")

-->[b,er]=datafit (G XX, b0)
er = 1699.0093

b =

I - 102.71289

! . 6053697 !

! 8. 9236567

! 1. 4374508

! . 0136086 !

You can check these results using function multiplelinear as follows:

-->si ze( XY)
ans =
! 12. 5

-->X=XY(1: 12, 1: 4) ; y=XY(1:12,5); //Prepare matrix X and vector y
-->[bb,C se]l=nultiplelinear(X y,0.10); //Call function nultiplelinear

Mul tiple linear regression

Tabl e of coefficients

i b(i) se(b(i)) Lower Upper t0 HO:b(i)=0

0 -102. 713 207. 859 -489. 237 283.81 -.49415 do not reject
1 . 60537 . 36890 -.0806111 1.29135 1. 64103 do not reject
2 8. 92364 5. 30052 -. 93293 18. 7802 1.68354 do not reject
3 1.43746 2.39162 -3.00988 5.88479 .60104 do not reject
4 . 0136093 . 73382  -1.35097 1.37819 . 0185458 do not reject

i y(i) yh(i) e(i) Cl. for Y C.1. for Ypred

1 240 258. 758 -18. 758 248. 31 269. 206 214.676 302. 84
2 236 234.114 1.88623 219. 86 248. 367 175. 738 292. 49
3 290 266. 689 23. 3109 255. 836 277.542 221.107 312.271
4 274 282. 956 - 8. 95646 271.601 294, 312 235. 506 330. 407
5 301 291. 815 9. 18521 284.131 299. 498 257.72 325. 909
6 316 309. 356 6. 64355 296. 747 321. 966 257. 204 361. 509
7 300 295. 186 4.81365 287. 17 303. 203 259. 916 330. 457
8 296 296. 157 -.15677 286. 462 305. 851 254. 842 337.472
9 267 284.85 -17.8502 273. 464 296. 236 237. 285 332. 415
10 276 288. 938 -12.9376 281.73 296. 145 256. 503 321. 372
11 288 281. 378 6.62157 274.517 288. 24 250. 134 312. 622
12 261 254. 802 6.19798 247.76 261. 844 222.94 286. 664
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Anal ysi s of variance

Sour ce of Sum of Degrees of Mean

variation squares freedom square FO
Regr essi on 4957. 24 4 1239. 31 5.10602
Resi dual 1699. 01 7 242.716

Tot al 6656. 25 11

Wth FO = 5.10602 and F_al pha = 2. 96053,
reject the null hypothesis HO: betal=beta2=...=betan=0.

Addi tional information

Standard error of estimate (se) = 15.5793
Coefficient of multiple determ nation (R*2) = .74475
Mul tiple correlation coefficient (R) = .86299
Adj usted coefficient of multiple determnation = 59889

Covariance nmatri x:

43205.302 - 10.472107 - 142.32333 - 389.41606 - 43.653591

! 1
I - 10.472107 . 1360850 - 1.4244286 . 4289197 - .0095819 !
I - 142.32333 - 1.4244286 28.095536 - 5.3633513 . 1923068 !
I - 389.41606 . 4289197 - 5.3633513 5.7198487 - .1563728 !
I - 43.653591 - .0095819 . 1923068 - .1563728 . 5384939 !

Notice that the error, e, returned by datafit is the sum of squared errors, SSE, returned by
function multiplelinear. The detailed regression analysis provided by multiplelinear indicates
that the hypothesis for significance of regression is to be rejected, i.e., the linear model is not
necessarily the best for this data set. Also, the coefficient of multiple regression and its
adjusted value are relatively small.

Note: Function datafit can be used to fit linear and non-linear functions. Details of the
application of function datafit were presented in Chapter 8.

Polynomial data fitting

A function for polynomial data fitting was developed in Chapter 5 to illustrate the use of matrix
operations. In this section, we present the analysis of polynomial data fitting as a special case
of a multilinear regression. A polynomial fitting is provided by a function of the form

Y=bg+byz + bz% + ... + byz".

This is equivalent to a multiple linear fitting if we take x; = z, X, = Z°, ..., X, = 2". Thus, given a
data set {(z1,y1), (Z2.¥2), --» (Zm,¥Ym)}, we can use function multiplelinear to obtain the
coefficients [by,by,b,,...,b,] of the polynomial fitting. As an example, consider the fitting of a
cubic polynomial to the data given in the following table:
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z 2.10 3.20 4.50 6.80 13.50 | 18.40 | 21.00
y | 13.41 | 46.48 | 95.39 | 380.88 |2451.55|5120.46|8619.14

The SCILAB instructions for producing the fitting are shown next. First, we load the data:
-->z=[ 2. 10, 3. 20, 4. 50, 6. 80, 13. 50, 18. 40, 21. 00] ;

-->y=[13. 41, 46. 48, 95. 39, 380. 88, 2451. 55, 5120. 46, 8619. 14] ;

Next, we prepare the vectors for the multiple linear regression and call the appropriate
function:

-->x1 = z; x2 = z"2; x3 = z"3; X = [x1'" x2' x3']; yy =y';

-->[b,C se]=mul tiplelinear(X yy,0.01)

Mul tiple linear regression

Tabl e of coefficients

i b(i) se(b(i)) Lower Upper t0 HO:b(i)=0

0 -467.699 664.835 -3528.66 2593. 26 -.70348 do not reject
1 223. 301 262.938  -987.289 1433. 89 . 84925 do not reject
2  -23.3898 26.1662  -143.861 97. 0817 -.89390 do not reject
3 1. 56949 . 74616 -1.86592 5. 00491 2.10341 do not reject

1 13. 41 -87. 3819 100. 792 - 351. 859 177.095 -4793. 08 4618. 32
2 46. 48 58. 78 -12.3 -115. 377 232. 937 -3048. 97 3166. 53
3 95. 39 206. 529 -111. 139 25. 4059 387. 653 -3024. 28 3437. 34
4 380. 88 462. 697 -81.8173 221. 167 704. 228 - 3836. 65 4762. 04
5 2451.55 2145.6 305. 95 1889. 3 2401.9 -2415. 28 6706. 48
6 5120. 46 5499. 33 - 378. 865 5272.7 5725. 95 1463. 9 9534. 75
7 8619.14 8441.76 177. 38 8143. 74 8739.78 3141.72 13741.8

Sour ce of Sum of Degrees of Mean

variation squares freedom square FO
Regr essi on 6. 64055e+07 3 2.21352e+07 222. 864
Resi dual 297964 3 99321.4

Tot al 6. 67034e+07 6

Wth FO = 222.864 and F_al pha = 29. 4567,
reject the null hypothesis HO: betal=beta2=...=betan=0.
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Addi tional information

Standard error of estimate (se) = 315. 153
Coefficient of multiple determi nation (R*2) = .99553
Mul tiple correlation coefficient (R) = .99776
Adj usted coefficient of multiple determnation = .99107

Covari ance matri x:

442005.47 - 166781.09 15518. 351 - 412. 44179
- 166781. 09 69136. 156 - 6728.9534 183. 73635

15518. 351 - 6728.9534 684. 66847 - 19.297326
- 412. 44179 183. 73635 - 19.297326 . 5567618

With the vector of coefficients found above, we define the cubic function:

-->deff (" [y]=yf(z)',"'y=b(1)+b(2)*z+b(3)*z"2+b(4)*z"3")

Then, we produce the fitted data and plot it together with the original data:

-->zz=[0: 0. 1: 25] ; yz=yf(zz);

-->rect = [0 -500 25 15000]; //Based on min. & nmax. values of z and y
-->xset ("mark',-1,2)

-->plot2d(zz,yz,1,'011'," ',rect)

-->plot2d(z,y,-1,'011"," ',rect)

-->xtitle('Fitting of a cubic function','z','y")

Fittingof acubicfunction
15000 Ll

oo 2.5 5.0 Y. 1.0 125 1.0 175 20.0 225 el
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Alternatively, we can use function datafit to obtain the coefficients of the fitting as follows:
-->XX = [z7y]
XX =

! 2.1 3.2 4.5 6.8 13.5 18. 4 21. !
! 13.41 46. 48 95. 39 380. 88 2451. 55 5120. 46 8619.14 !

-->b0=ones(4, 1)
b0 =

N

-->[ b, er]=datafit (G XX, b0)
er =

297964. 09
b =

- 467.6971
223. 30004

- 23.389786
1. 5694905
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Exercises

[1]. To analyze the dependency of the mean annual flood, Q(cfs), on the drainage area, A(mi?)
for a given region, data from six experimental watersheds is collected. The data is summarized
in the table below:

A(mi®) | 16.58 | 3.23 | 16.8 | 42.91 | 8.35 | 6.04
Q(cfs) | 455 | 105 | 465 | 1000 | 290 | 157

(a) Use function linreg to perform a simple linear regression analysis on these data. The
purpose is to obtain a relationship of the form Q = mA + b. (b) Determine the covariance of A
and B, (c)the correlation coefficient, and (d) the standard error of the estimate.

[2] For the data of problem [1] use function linregtable to perform the linear fitting. (a) What
is the decision regarding the hypothesis that the slope of the linear fitting may be zero at a
level of confidence of 0.05? (b) What is the decision regarding the hypothesis that the
intercept of the linear fitting may be zero at a level of confidence of 0.05?

[3] For the data of problem [1] use function multiplelinear to produce the data fitting. (a)
What is the decision regarding the hypothesis that the slope of the linear fitting may be zero at
a level of confidence of 0.05? (b) What is the decision regarding the hypothesis that the
intercept of the linear fitting may be zero at a level of confidence of 0.05? (b) What is the
decision regarding the hypothesis that the linear fitting may not apply at all?

[4]. The data shown in the table below represents the monthly precipitation, P(in), in a
particular month, and the corresponding runoff, R(in), out of a specific hydrological basin for
the period 1960-1969.

Year | 1960 1961 1962 1963 1964 1965 1966/ 1967 1968 1969
P(n)| 195 10.8 3.220 451 6.71 1.18 4.82 6.38 5.97| 4.64
R(in)| 0.46] 2.85 0.99 1.4 198 045 1.31 222 136 1.21

(a) Use function linreg to perform a simple linear regression analysis on these data. The
purpose is to obtain a relationship of the form R = mP + b. (b) Determine the covariance of P
and R, (c)the correlation coefficient, and (d) the standard error of the estimate.

[5] For the data of problem [1] use function linregtable to perform the linear fitting. (a) What
is the decision regarding the hypothesis that the slope of the linear fitting may be zero at a
level of confidence of 0.05? (b) What is the decision regarding the hypothesis that the
intercept of the linear fitting may be zero at a level of confidence of 0.05?

[6] For the data of problem [1] use function multiplelinear to produce the data fitting. (a)
What is the decision regarding the hypothesis that the slope of the linear fitting may be zero at
a level of confidence of 0.05? (b) What is the decision regarding the hypothesis that the
intercept of the linear fitting may be zero at a level of confidence of 0.05? (b) What is the
decision regarding the hypothesis that the linear fitting may not apply at all?

[7]. The following table shows data indicating the monthly precipitation during the month of

February, P¢, and during the month of March, P,, as well as the runoff during the month of
March, R,,, for a specific watershed during the period 1935-1958.
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Year Pm Pf Rm
1935 9.74 4.11 6.15
1936 6.01 3.33 4.93
1937 1.30 5.08 1.42
1938 4.80 2.41 3.60
1939 4.15 9.64 354
1940 5.94 4.04 2.26
1941 2.99 0.73 0.81
1942 5.11 3.41 2.68
1943 7.06 3.89 4.68
1944 6.38 8.68 5.18
1945 1.92 6.83 291
1946 2.82 5.21 2.84
1947 251 1.78 2.02
1948 5.07 8.39 3.27
1949 4.63 3.25 3.05
1950 4.24 5.62 259
1951 6.38 8.56 4.66
1952 7.01 1.96 5.40
1953 4.15 557 2.60
1954 491 2.48 252
1955 8.18 5.72 6.09
1956 5.85 10.19 4.58
1957 2.14 5.66 2.02
1958 3.06 3.04 259

a. Use function multiplot to show the dependence of the many variables.

b. Use function multiplelinear to check the multiple linear fitting R, = by + b,P,, +
bzpf.

c. For a level of confidence of 0.05, what are the decisions regarding the hypotheses
that each of the coefficients may be zero?

d. What is the decision regarding the hypothesis that the linear fitting may not apply
at all for the same level of confidence?

e. What value of runoff for the month of March is predicted if the precipitation in
the month of March is 6.2 in, and that of the month of February is 3.2 in?

f. What are the confidence intervals for the mean value and the prediction for the
data of question (e) at a confidence level 0.05?

[8]. In the analysis of runoff produced by precipitation into a watershed, often we are
required to estimate a parameter known as the time of concentration (t;) which determines
the time to the peak of the hydrograph produced by the watershed. It is assumed that the
time of concentration is a function of a characteristic watershed length (L), of a characteristic
watershed slope (S), and of a parameter known as the runoff curve number (CN). Runoff curve
numbers are numbers used by the U.S. Soil Conservation Service in the estimation of runoff
from watersheds. Runoff curve numbers are typically functions of the location of the
watershed and of its soil and vegetation covers. The following table shows values of the time
of concentration, t.(hr), the watershed length, L(ft), the watershed slope, S(%), and the runoff
curve number (CN) for 5 experimental watersheds.
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t(hr) | 02|02 ] 02| 03] 03
L (ft) | 800 | 1200 | 2100 | 2000 | 1500
s | 2 | 3] 4|6 | 1
CN 75 | 84 | 88 | 70 | 85

(a) Use function multiplot to show the interdependence of the various variables in the table.
(b) Assuming that a multiple-linear fitting can be used to explain the dependence of t.on L, S,
and CN, use function multiplelinear to determine the coefficients of the fitting. (c) For a level
of confidence of 0.01, what are the decisions regarding the hypotheses that each of the
coefficients may be zero? (d) What is the decision regarding the hypothesis that the linear
fitting may not apply at all for the same level of confidence? (e) What value of the time of
concentration is predicted for L = 1750 ft, S = 5%, and CN = 80. (f) What are the confidence
intervals for the mean value and the prediction for the data of question (e) at a confidence
level 0.05?

[9]. The data in the table below shows the peak discharge, gp(cfs), the rainfall intensity,
i(in/hr), and the drainage area, A(acres), for rainfall events in six different watersheds.

gp(cfs) 23 45 44 64 68 62
i(infhr) | 3.2 4.6 5.1 3.8 6.1 7.4
A(acres)| 12 21 18 32 24 16

(a) Use function multiplot to show the interdependence of the various variables in the table.
(b) Assuming that a multiple-linear fitting can be used to explain the dependence of g, on i,
and A, use function multiplelinear to determine the coefficients of the fitting. (c) For a level
of confidence of 0.1, what are the decisions regarding the hypotheses that each of the
coefficients may be zero? (d) What is the decision regarding the hypothesis that the linear
fitting may not apply at all for the same level of confidence? (e) What value of the time of
concentration is predicted for i = 5.6 in/hr and A = 25 acres. (f) What are the confidence
intervals for the mean value and the prediction for the data of question (e) at a confidence
level 0.10?

[10]. Measurements performed across a pipeline diameter produce the following table of
velocities, v(fps), as function of the radial distance, r(in), measured from the pipe centerline.
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r(in) V(fps) r(in) V(fps) r(in) V(fps) r(in) V(fps)

2.7 57.73 13 64.40 0.9 65.50 2.5 58.90
2.6 58.30 1.2 64.80 11 64.80 2.6 58.40
2.5 59.25 11 64.80 13 64.10 2.7 57.50
2.4 59.70 1.0 65.20 14 63.70 2.8 57.00
2.3 59.80 0.9 65.50 15 63.40 29 56.60
2.2 60.60 0.8 65.50 1.6 63.00 3.0 55.90
2.1 61.20 0.7 65.90 1.7 62.70 3.1 54.80
2.0 61.50 0.5 66.30 1.8 62.50 3.2 54.20
1.9 62.20 0.3 66.40 1.9 62.10 3.3 53.20
1.8 62.70 0.1 66.50 2.0 61.25 3.4 52.35
1.7 62.90 0.1 66.50 2.1 61.20 3.5 50.80
1.6 63.05 0.3 66.30 2.2 60.55 3.6 49.50
15 63.65 0.5 66.00 2.3 60.00 3.7 47.70
14 64.10 0.7 65.70 2.4 59.40 3.8 44.45

(a) Plot the velocity profile indicated in the table. Notice that the values of r start at 2.7 in
and decrease to 0.1lin, just to increase again from 0.1 in to 3.8 in. What these values of r
represent are velocity measurements at both sides of the centerline along a diameter of the
pipe. To produce an accurate plot of the velocity distribution, take the values of r from 2.7 in
down to 0.1 in as negative, and the remaining values as positive. (b) Using SCILAB function
datafit, fit a logarithmic function of the form v = by + b; In(y) to the data, where y = R-r, and R
is the pipe radius measured as R = 3.958 in.

[11]. The tables below show measurements of stagnation pressure on an air jet in a test set
up. The values of x represent distances from the jet outlet, where the values of r represent
distances from the jet centerline measured radially outwards. The stagnation pressure values
are used to calculate air velocities at the locations indicated by using v = (2gh)*?, where g is
the acceleration of gravity. To make the units consistent, we recommend that you transform
the data to feet by using 1 in = (1/12) ft, and 1 cm = 0.0328 ft, and calculate the velocities
using g = 32.2 ft/s°.

Along centerline Across jetat x =12 in
X(in) h(cm) r(in) h(cm) r(in) h(cm)
-0.25 20.58 8.50 0.00 -0.50 6.08
0.00 20.38 5.00 0.00 -1.00 5.06
0.50 20.16 4.50 0.15 -1.50 3.97
1.00 20.16 4.20 0.20 -2.00 2.73
3.00 20.16 3.70 0.47 -2.50 1.78
5.00 19.6 3.50 0.62 -3.00 1.11
6.00 18.25 3.09 0.94 -3.50 0.70
6.50 17.11 2.83 1.19 -4.20 0.25
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8.00 13.52 2.55 1.62 -4.50 0.17

10.00 9.28 2.00 2.62 -4.80 0.12

15.00 414 1.50 3.91 -5.00 0.07

20.00 2.23 1.00 5.12 -5.30 0.02
0.50 6.07 -5.50 0.00
0.00 6.51

(a) Convert the data columns to feet and calculate the velocities corresponding to the different
values of h. (b) Plot the centerline velocities against the distance x and fit an equation of the
form

v(X) = bo/(by + byx)

to the data resulting from the first table. (c) Plot the velocity v at section x = 12 in against the
radial distance |r|], and fit an equation of the form

v(r) = boBxp(-b;x%)

to the data resulting from the second table.

[12]. For relatively low pressures, Henry’s law relates the vapor pressure of a gas, P, to the
molar fraction of the gas in mixture, x. The law is stated as P = kx, where k is known as
Henry’s constant. To determine Henry’s constant in practice we use data of P against x and
fit a straight line, i.e., P = by + b;x. If the value of by can be taken as zero, then, b; = k.

Given the pressure-molar fraction data shown in the next table, use function linreg to

determine Henry’s constant for the solubility of the following elements or compouns in water
at temperature indicated:

Sulfur dioxide, 23°C Carbon monoxide, 19°C  Hydrogen, 23°C

P(mmHg)  x(10% P(mmHg) x(10°)  P(mmHg) x(10°)
5 0.3263 900 2.417 1100 1.861
10 0.5709 1000 2.685 2000 3.382
50 2.329 2000 5.354 3000 5.067
100 4.213 3000 8.000 4000 6.729
200 7.448 4000 10.630 6000 9.841
300 10.2 5000 13.230 8000  12.560
6000 15.800
7000 18.280
8000 20.670
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[13]. In the analysis of liquid mixtures it is often necessary to determine parameters known as
activity coefficients. For the mixture of two liquids the van Laar equations can be used to
determine the activity coefficients, y; and y»,, in terms of the molecular fractions x; and Xs:

A A
—, Iy, = —————.
L A , B
B X, ALK,

The molecular fractions are related by

Iny, =

X1+ X = 1.

The table below shows the activity coefficients for a liquid mixture as functions of the
molecular fraction x;. Use these data and SCILAB function datafit to obtain the values of the
van Laar coefficients A and B for the data.

X1 i Yo

0.1 4.90 1.05
0.2 2.90 1.20
0.3 1.95 1.30
0.4 1.52 1.50
0.5 1.30 1.70
0.6 1.20 2.00
0.7 1.10 2.25
0.8 1.04 2.60
0.9 1.01 2.95

[14]. An alternative relationship between the activity coefficients, y; and y,, in terms of the
molecular fractions x; and x, are the Margules’ equations:

In yi = (2B-A)x,% + 2(A-B)x,>
In 5 = (2A-B)x4? + 2(B-A)x,°.

Using the data of problem [13] and SCILAB function datafit, determine the coefficients A and B
of the Margule’s equations.

[15]. Infiltration into soil is typically modeled using Horton’s equation
f =1+ (f-f)e™,
where f is the infiltration rate, f. is the infiltration rate at saturation, f, is the initial

infiltration rate, t is time, and k is a constant that depends primarily on the type of soil and
vegetation of the area of interest.
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The following table shows measurements of the infiltration rate, f, as function of time, t, for a
specific storm in a watershed.

t(hr) f(cm/hr) t(hr) f(cm/hr)

1 3.9 14 1.43
2 3.4 16 1.36
3 3.1 18 1.31
4 2.7 20 1.28
5 2.5 22 1.25
6 2.3 24 1.23
8 2 26 1.22
10 1.8 28 12
12 1.54 30 1.2

(a) Use SCILAB’s function datafit to obtain the parameters f,, f., and k for the Horton’s
equation.
(b) Plot the original data and the fitted data in the same set of axes.

[16]. The following data represents different properties of granite samples taken at the
locations indicated by the coordinates x(mi) and y(mi) on a specific site. The properties listed
in the table are as follows: x; = percentage of quartz in the sample, x, = color index (a

percentage), x; = percentage of total feldspar, w = specific gravity (water = 1.0).

X1 X2 X3 w y X
21.3 5.5 73.0 2.63 0.920 6.090
38.9 2.7 57.4 2.64 1.150 3.625
26.1 11.1 62.6 2.64 1.160 6.750
29.3 6.0 63.6 2.63 1.300 3.010
24.5 6.6 69.1 2.64 1.400 7.405
30.9 3.3 65.1 2.61 1.590 8.630
27.9 1.9 69.1 2.63 1.750 4.220
22.8 1.2 76.0 2.63 1.820 2.420
20.1 5.6 74.1 2.65 1.830 8.840
16.4 21.3 61.7 2.69 1.855 10.920
15.0 18.9 65.6 2.67 2.010 14.225
0.6 35.9 62.5 2.83 2.040 10.605
18.4 16.6 64.9 2.70 2.050 8.320
19.5 14.2 65.4 2.68 2.210 8.060
34.4 4.6 60.7 2.62 2.270 2.730
26.9 8.6 63.6 2.63 2.530 3.500
28.7 5.5 65.8 2.61 2.620 7.445
28.5 3.9 67.8 2.62 3.025 5.060
38.4 3.0 57.6 2.61 3.060 5.420
28.1 12.9 59.0 2.63 3.070 12.550
37.4 3.5 57.6 2.63 3.120 12.130
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0.9 22.9 74.4 2.78 3.400 15.400

8.8 34.9 55.4 2.76 3.520 9.910
16.2 5.5 77.6 2.63 3.610 11.520
2.2 28.4 69.3 2.74 4.220 16.400
29.1 5.1 65.7 2.64 4.250 11.430
24.9 6.9 67.8 2.70 4.940 5.910
39.6 3.6 56.6 2.63 5.040 1.840
17.1 11.3 70.9 2.71 5.060 11.760
0.0 47.8 52.2 2.84 5.090 16.430
19.9 11.6 67.2 2.68 5.240 11.330
1.2 34.8 64.0 2.84 5.320 8.780
13.2 18.8 67.4 2.74 5.320 13.730
13.7 21.2 64.0 2.74 5.330 12.450
26.1 2.3 71.2 2.61 5.350 1.430
19.9 4.1 76.0 2.63 5.610 4.150
4.9 18.8 74.30 2.77 5.850 13.840
15.5 12.2 69.70 2.72 6.460 11.660
0.0 39.7 60.20 2.83 6.590 14.640
4.5 30.5 63.90 2.77 7.260 12.810
0.0 63.8 35.20 2.92 7.420 16.610
4.0 24.1 71.80 2.77 7.910 14.650
23.4 12.4 63.10 2.79 8.470 13.330
29.5 9.8 60.40 2.69 8.740 15.770

(a) Use function multiplot to show the interdependence of the various variables in the table.
(b) Assuming that a multiple-linear fitting can be used to explain the dependence of w on X,
X, and Xz, use function multiplelinear to determine the coefficients of the fitting. (c) For a
level of confidence of 0.1, what are the decisions regarding the hypotheses that each of the
coefficients may be zero? (d) What is the decision regarding the hypothesis that the linear
fitting may not apply at all for the same level of confidence? (e) What value of the time of
concentration is predicted for x; =17, x, = 25, and x; = 55. (f) What are the confidence
intervals for the mean value and the prediction for the data of question (e) at a confidence
level 0.10?
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